示例运算符测试代码¶
文档中的许多示例最后都调用函数 expect
来检查运行时是否针对给定示例返回预期的输出。 这里有一个基于 onnxruntime 的实现。
from typing import Any, Sequence
import numpy as np
import onnx
import onnxruntime
def expect(
node: onnx.NodeProto,
inputs: Sequence[np.ndarray],
outputs: Sequence[np.ndarray],
name: str,
**kwargs: Any,
) -> None:
# Builds the model
present_inputs = [x for x in node.input if (x != "")]
present_outputs = [x for x in node.output if (x != "")]
input_type_protos = [None] * len(inputs)
if "input_type_protos" in kwargs:
input_type_protos = kwargs["input_type_protos"]
del kwargs["input_type_protos"]
output_type_protos = [None] * len(outputs)
if "output_type_protos" in kwargs:
output_type_protos = kwargs["output_type_protos"]
del kwargs["output_type_protos"]
inputs_vi = [
_extract_value_info(arr, arr_name, input_type)
for arr, arr_name, input_type in zip(inputs, present_inputs, input_type_protos)
]
outputs_vi = [
_extract_value_info(arr, arr_name, output_type)
for arr, arr_name, output_type in zip(
outputs, present_outputs, output_type_protos
)
]
graph = onnx.helper.make_graph(
nodes=[node], name=name, inputs=inputs_vi, outputs=outputs_vi
)
kwargs["producer_name"] = "backend-test"
if "opset_imports" not in kwargs:
# To make sure the model will be produced with the same opset_version after opset changes
# By default, it uses since_version as opset_version for produced models
produce_opset_version = onnx.defs.get_schema(
node.op_type, domain=node.domain
).since_version
kwargs["opset_imports"] = [
onnx.helper.make_operatorsetid(node.domain, produce_opset_version)
]
model = onnx.helper.make_model_gen_version(graph, **kwargs)
# Checking the produces are the expected ones.
sess = onnxruntime.InferenceSession(model.SerializeToString(),
providers=["CPUExecutionProvider"])
feeds = {name: value for name, value in zip(node.input, inputs)}
results = sess.run(None, feeds)
for expected, output in zip(outputs, results):
assert_allclose(expected, output)