使用其他转换器实现新的转换器

在许多情况下,自定义模型会利用现有模型,而这些现有模型已经关联了转换器。为了转换这种拼凑结构,必须调用现有的转换器。本示例展示了如何做到这一点。示例 实现新的转换器 可以通过使用 PCA 进行重写。然后,我们可以重用与此模型关联的转换器。

自定义模型

让我们使用 scikit-learn API 实现一个简单的自定义模型。该模型是一种预处理方法,用于去除相关随机变量之间的关联。如果 X 是一个特征矩阵,V=\frac{1}{n}X'X 是协方差矩阵。我们计算 X V^{1/2}

import pickle
from io import BytesIO
import numpy
from numpy.testing import assert_almost_equal
from onnxruntime import InferenceSession
from sklearn.base import TransformerMixin, BaseEstimator
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from skl2onnx import update_registered_converter
from skl2onnx.algebra.onnx_operator import OnnxSubEstimator
from skl2onnx import to_onnx


class DecorrelateTransformer(TransformerMixin, BaseEstimator):
    """
    Decorrelates correlated gaussian features.

    :param alpha: avoids non inversible matrices
        by adding *alpha* identity matrix

    *Attributes*

    * `self.mean_`: average
    * `self.coef_`: square root of the coveriance matrix
    """

    def __init__(self, alpha=0.0):
        BaseEstimator.__init__(self)
        TransformerMixin.__init__(self)
        self.alpha = alpha

    def fit(self, X, y=None, sample_weights=None):
        self.pca_ = PCA(X.shape[1])
        self.pca_.fit(X)
        return self

    def transform(self, X):
        return self.pca_.transform(X)


def test_decorrelate_transformer():
    data = load_iris()
    X = data.data

    dec = DecorrelateTransformer()
    dec.fit(X)
    pred = dec.transform(X)
    cov = pred.T @ pred
    for i in range(cov.shape[0]):
        cov[i, i] = 1.0
    assert_almost_equal(numpy.identity(4), cov)

    st = BytesIO()
    pickle.dump(dec, st)
    dec2 = pickle.load(BytesIO(st.getvalue()))
    assert_almost_equal(dec.transform(X), dec2.transform(X))


test_decorrelate_transformer()

data = load_iris()
X = data.data

dec = DecorrelateTransformer()
dec.fit(X)
pred = dec.transform(X[:5])
print(pred)
[[-2.68412563e+00  3.19397247e-01 -2.79148276e-02  2.26243707e-03]
 [-2.71414169e+00 -1.77001225e-01 -2.10464272e-01  9.90265503e-02]
 [-2.88899057e+00 -1.44949426e-01  1.79002563e-02  1.99683897e-02]
 [-2.74534286e+00 -3.18298979e-01  3.15593736e-02 -7.55758166e-02]
 [-2.72871654e+00  3.26754513e-01  9.00792406e-02 -6.12585926e-02]]

转换为 ONNX

让我们尝试转换它,看看会发生什么。

try:
    to_onnx(dec, X.astype(numpy.float32))
except Exception as e:
    print(e)
Unable to find a shape calculator for type '<class '__main__.DecorrelateTransformer'>'.
It usually means the pipeline being converted contains a
transformer or a predictor with no corresponding converter
implemented in sklearn-onnx. If the converted is implemented
in another library, you need to register
the converted so that it can be used by sklearn-onnx (function
update_registered_converter). If the model is not yet covered
by sklearn-onnx, you may raise an issue to
https://github.com/onnx/sklearn-onnx/issues
to get the converter implemented or even contribute to the
project. If the model is a custom model, a new converter must
be implemented. Examples can be found in the gallery.

这个错误意味着没有与 DecorrelateTransformer 关联的转换器。让我们来做这件事。这需要实现以下两个函数:一个形状计算器和一个签名如下所示的转换器。首先是形状计算器。我们检索输入类型并告知输出类型具有相同的类型、相同的行数和特定的列数。

def decorrelate_transformer_shape_calculator(operator):
    op = operator.raw_operator
    input_type = operator.inputs[0].type.__class__
    input_dim = operator.inputs[0].type.shape[0]
    output_type = input_type([input_dim, op.pca_.components_.shape[1]])
    operator.outputs[0].type = output_type

转换器。我们需要注意的一点是目标 opset 版本号。此信息很重要,可确保每个节点都按照该 opset 版本号的规范进行定义。

def decorrelate_transformer_converter(scope, operator, container):
    op = operator.raw_operator
    opv = container.target_opset
    out = operator.outputs

    # We retrieve the unique input.
    X = operator.inputs[0]

    # We tell in ONNX language how to compute the unique output.
    # op_version=opv tells which opset is requested
    Y = OnnxSubEstimator(op.pca_, X, op_version=opv, output_names=out[:1])
    Y.add_to(scope, container)

我们需要让 skl2onnx 知道新的转换器。

update_registered_converter(
    DecorrelateTransformer,
    "SklearnDecorrelateTransformer",
    decorrelate_transformer_shape_calculator,
    decorrelate_transformer_converter,
)


onx = to_onnx(dec, X.astype(numpy.float32))

sess = InferenceSession(onx.SerializeToString(), providers=["CPUExecutionProvider"])

exp = dec.transform(X.astype(numpy.float32))
got = sess.run(None, {"X": X.astype(numpy.float32)})[0]


def diff(p1, p2):
    p1 = p1.ravel()
    p2 = p2.ravel()
    d = numpy.abs(p2 - p1)
    return d.max(), (d / numpy.abs(p1)).max()


print(diff(exp, got))
(np.float64(3.5601259806838925e-07), np.float64(0.00031583501773748286))

让我们检查一下它是否也适用于双精度浮点数(double)。

onx = to_onnx(dec, X.astype(numpy.float64))

sess = InferenceSession(onx.SerializeToString(), providers=["CPUExecutionProvider"])

exp = dec.transform(X.astype(numpy.float64))
got = sess.run(None, {"X": X.astype(numpy.float64)})[0]
print(diff(exp, got))
(np.float64(1.942890293094024e-15), np.float64(2.5733660162141577e-13))

如预期,使用双精度浮点数时差异更小。

脚本总运行时间: (0 分钟 0.049 秒)

由 Sphinx-Gallery 生成的图库