一个模型,多种可能的带选项转换

转换模型的方式并非只有一种。新版本的 ONNX 中可能添加了新的操作符,这会加快转换后模型的速度。合理的选择是使用这个新的操作符,但这取决于相关的运行时是否已经实现它。如果两个不同的用户对同一个模型需要两种不同的转换方式怎么办?让我们看看如何做到这一点。

选项 zipmap

默认情况下,每个分类器都被转换成一个 ONNX 图,输出两个结果:预测标签和每个标签的预测概率。默认情况下,标签是整数,概率存储在字典中。这就是以下图末尾添加的 ZipMap 操作符的目的。

    graph ONNX(LogisticRegression) (
      %X[FLOAT, ?x4]
    ) {
      %label, %probability_tensor = LinearClassifier[classlabels_ints = [0, 1, 2], coefficients = [-0.374590873718262, 0.882017612457275, -2.25903177261353, -0.96484386920929, 0.463038802146912, -0.698963463306427, -0.0836651995778084, -0.888288736343384, -0.0884479135274887, -0.18305416405201, 2.34269690513611, 1.85313260555267], intercepts = [8.58371162414551, 2.95640826225281, -11.5401201248169], multi_class = 1, post_transform = 'SOFTMAX'](%X)
      %output_label = Cast[to = 7](%label)
      %probabilities = Normalizer[norm = 'L1'](%probability_tensor)
      %output_probability = ZipMap[classlabels_int64s = [0, 1, 2]](%probabilities)
      return %output_label, %output_probability
    }

这个操作符效率不高,因为它将每个概率和标签复制到不同的容器中。对于小型分类器来说,这个时间通常很明显。因此,移除它是合理的。

    graph ONNX(LogisticRegression) (
      %X[FLOAT, ?x4]
    ) {
      %label, %probability_tensor = LinearClassifier[classlabels_ints = [0, 1, 2], coefficients = [-0.374590873718262, 0.882017612457275, -2.25903177261353, -0.96484386920929, 0.463038802146912, -0.698963463306427, -0.0836651995778084, -0.888288736343384, -0.0884479135274887, -0.18305416405201, 2.34269690513611, 1.85313260555267], intercepts = [8.58371162414551, 2.95640826225281, -11.5401201248169], multi_class = 1, post_transform = 'SOFTMAX'](%X)
      %probabilities = Normalizer[norm = 'L1'](%probability_tensor)
      return %label, %probabilities
    }

图中可能包含多个分类器,重要的是能够指定哪个分类器应该保留其 ZipMap,哪个不保留。因此,可以通过 ID 来指定选项。

from pprint import pformat
import numpy
from onnx.reference import ReferenceEvaluator
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from skl2onnx.common._registration import _converter_pool
from skl2onnx import to_onnx
from onnxruntime import InferenceSession

iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, _ = train_test_split(X, y, random_state=11)
clr = LogisticRegression()
clr.fit(X_train, y_train)

model_def = to_onnx(
    clr, X_train.astype(numpy.float32), options={id(clr): {"zipmap": False}}
)
oinf = ReferenceEvaluator(model_def)
print(oinf)
ReferenceEvaluator(X) -> label, probabilities

使用函数 id 有一个缺点:它不可序列化 (not pickable)。最好还是使用字符串。

model_def = to_onnx(clr, X_train.astype(numpy.float32), options={"zipmap": False})
oinf = ReferenceEvaluator(model_def)
print(oinf)
ReferenceEvaluator(X) -> label, probabilities

流水线中的选项

在流水线中,sklearn-onnx 使用相同的命名约定。

pipe = Pipeline([("norm", MinMaxScaler()), ("clr", LogisticRegression())])
pipe.fit(X_train, y_train)

model_def = to_onnx(pipe, X_train.astype(numpy.float32), options={"clr__zipmap": False})
oinf = ReferenceEvaluator(model_def)
print(oinf)
ReferenceEvaluator(X) -> label, probabilities

选项 raw_scores

默认情况下,每个分类器都被转换成一个返回概率的图。但是许多模型计算未缩放的 raw_scores。首先,使用概率:

pipe = Pipeline([("norm", MinMaxScaler()), ("clr", LogisticRegression())])
pipe.fit(X_train, y_train)

model_def = to_onnx(
    pipe, X_train.astype(numpy.float32), options={id(pipe): {"zipmap": False}}
)

oinf = ReferenceEvaluator(model_def)
print(oinf.run(None, {"X": X.astype(numpy.float32)[:5]}))
[array([0, 0, 0, 0, 0]), array([[0.8826898 , 0.10948468, 0.00782558],
       [0.7944286 , 0.19729899, 0.00827242],
       [0.8555814 , 0.13791925, 0.00649932],
       [0.82628906, 0.16633531, 0.00737559],
       [0.9005094 , 0.09238414, 0.00710642]], dtype=float32)]

然后使用原始分数:

model_def = to_onnx(
    pipe,
    X_train.astype(numpy.float32),
    options={id(pipe): {"raw_scores": True, "zipmap": False}},
)

oinf = ReferenceEvaluator(model_def)
print(oinf.run(None, {"X": X.astype(numpy.float32)[:5]}))
[array([0, 0, 0, 0, 0]), array([[0.8826898 , 0.10948468, 0.00782558],
       [0.7944286 , 0.19729899, 0.00827242],
       [0.8555814 , 0.13791925, 0.00649932],
       [0.82628906, 0.16633531, 0.00737559],
       [0.9005094 , 0.09238414, 0.00710642]], dtype=float32)]

看起来没有起作用……我们需要指定这个选项应用于流水线的特定部分,而不是整个流水线。

model_def = to_onnx(
    pipe,
    X_train.astype(numpy.float32),
    options={id(pipe.steps[1][1]): {"raw_scores": True, "zipmap": False}},
)

oinf = ReferenceEvaluator(model_def)
print(oinf.run(None, {"X": X.astype(numpy.float32)[:5]}))
[array([0, 0, 0, 0, 0]), array([[ 2.2709217 ,  0.18373239, -2.454654  ],
       [ 1.9858665 ,  0.59296364, -2.57883   ],
       [ 2.2350655 ,  0.40995252, -2.6450179 ],
       [ 2.1072361 ,  0.5042972 , -2.6115332 ],
       [ 2.3729892 ,  0.09598386, -2.468973  ]], dtype=float32)]

有负值。这下对了。字符串仍然更容易使用。

model_def = to_onnx(
    pipe,
    X_train.astype(numpy.float32),
    options={"clr__raw_scores": True, "clr__zipmap": False},
)

oinf = ReferenceEvaluator(model_def)
print(oinf.run(None, {"X": X.astype(numpy.float32)[:5]}))
[array([0, 0, 0, 0, 0]), array([[ 2.2709217 ,  0.18373239, -2.454654  ],
       [ 1.9858665 ,  0.59296364, -2.57883   ],
       [ 2.2350655 ,  0.40995252, -2.6450179 ],
       [ 2.1072361 ,  0.5042972 , -2.6115332 ],
       [ 2.3729892 ,  0.09598386, -2.468973  ]], dtype=float32)]

负数。我们仍然得到原始分数。

选项 decision_path

scikit-learn 实现了一个函数来获取决策路径。可以通过选项 decision_path 启用它。

clrrf = RandomForestClassifier(n_estimators=2, max_depth=2)
clrrf.fit(X_train, y_train)
clrrf.predict(X_test[:2])
paths, n_nodes_ptr = clrrf.decision_path(X_test[:2])
print(paths.todense())

model_def = to_onnx(
    clrrf,
    X_train.astype(numpy.float32),
    options={id(clrrf): {"decision_path": True, "zipmap": False}},
)
sess = InferenceSession(
    model_def.SerializeToString(), providers=["CPUExecutionProvider"]
)
[[1 0 0 0 1 0 1 1 0 1 0 1]
 [1 0 0 0 1 0 1 1 0 1 0 1]]

模型产生 3 个输出。

print([o.name for o in sess.get_outputs()])
['label', 'probabilities', 'decision_path']

让我们显示最后一个。

res = sess.run(None, {"X": X_test[:2].astype(numpy.float32)})
print(res[-1])
[['1000101' '10101']
 ['1000101' '10101']]

可用选项列表

选项在每个转换器中注册,以便在运行转换时检测任何支持的选项。

all_opts = set()
for k, v in sorted(_converter_pool.items()):
    opts = v.get_allowed_options()
    if not isinstance(opts, dict):
        continue
    name = k.replace("Sklearn", "")
    print("%s%s %r" % (name, " " * (30 - len(name)), opts))
    for o in opts:
        all_opts.add(o)

print("all options:", pformat(list(sorted(all_opts))))
Skl2onnxTraceableCountVectorizer {'tokenexp': None, 'separators': None, 'nan': [True, False], 'keep_empty_string': [True, False], 'locale': None}
Skl2onnxTraceableTfidfVectorizer {'tokenexp': None, 'separators': None, 'nan': [True, False], 'keep_empty_string': [True, False], 'locale': None}
AdaBoostClassifier             {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True], 'raw_scores': [True, False]}
BaggingClassifier              {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True], 'raw_scores': [True, False]}
BayesianGaussianMixture        {'score_samples': [True, False]}
BayesianRidge                  {'return_std': [True, False]}
BernoulliNB                    {'zipmap': [True, False, 'columns'], 'output_class_labels': [False, True], 'nocl': [True, False]}
CalibratedClassifierCV         {'zipmap': [True, False, 'columns'], 'output_class_labels': [False, True], 'nocl': [True, False]}
CategoricalNB                  {'zipmap': [True, False, 'columns'], 'output_class_labels': [False, True], 'nocl': [True, False]}
ComplementNB                   {'zipmap': [True, False, 'columns'], 'output_class_labels': [False, True], 'nocl': [True, False]}
CountVectorizer                {'tokenexp': None, 'separators': None, 'nan': [True, False], 'keep_empty_string': [True, False], 'locale': None}
DecisionTreeClassifier         {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True], 'decision_path': [True, False], 'decision_leaf': [True, False]}
DecisionTreeRegressor          {'decision_path': [True, False], 'decision_leaf': [True, False]}
ExtraTreeClassifier            {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True], 'decision_path': [True, False], 'decision_leaf': [True, False]}
ExtraTreeRegressor             {'decision_path': [True, False], 'decision_leaf': [True, False]}
ExtraTreesClassifier           {'zipmap': [True, False, 'columns'], 'raw_scores': [True, False], 'nocl': [True, False], 'output_class_labels': [False, True], 'decision_path': [True, False], 'decision_leaf': [True, False]}
ExtraTreesRegressor            {'decision_path': [True, False], 'decision_leaf': [True, False]}
FeatureHasher                  {'separator': None}
GaussianMixture                {'score_samples': [True, False]}
GaussianNB                     {'zipmap': [True, False, 'columns'], 'output_class_labels': [False, True], 'nocl': [True, False]}
GaussianProcessClassifier      {'optim': [None, 'cdist'], 'nocl': [False, True], 'output_class_labels': [False, True], 'zipmap': [False, True]}
GaussianProcessRegressor       {'return_cov': [False, True], 'return_std': [False, True], 'optim': [None, 'cdist']}
GradientBoostingClassifier     {'zipmap': [True, False, 'columns'], 'raw_scores': [True, False], 'output_class_labels': [False, True], 'nocl': [True, False]}
HistGradientBoostingClassifier {'zipmap': [True, False, 'columns'], 'raw_scores': [True, False], 'output_class_labels': [False, True], 'nocl': [True, False]}
HistGradientBoostingRegressor  {'raw_scores': [True, False]}
IsolationForest                {'score_samples': [True, False]}
KMeans                         {'gemm': [True, False]}
KNNImputer                     {'optim': [None, 'cdist']}
KNeighborsClassifier           {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'raw_scores': [True, False], 'output_class_labels': [False, True], 'optim': [None, 'cdist']}
KNeighborsRegressor            {'optim': [None, 'cdist']}
KNeighborsTransformer          {'optim': [None, 'cdist']}
KernelPCA                      {'optim': [None, 'cdist']}
LinearClassifier               {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True], 'raw_scores': [True, False]}
LinearSVC                      {'nocl': [True, False], 'output_class_labels': [False, True], 'raw_scores': [True, False]}
LocalOutlierFactor             {'score_samples': [True, False], 'optim': [None, 'cdist']}
MLPClassifier                  {'zipmap': [True, False, 'columns'], 'output_class_labels': [False, True], 'nocl': [True, False]}
MaxAbsScaler                   {'div': ['std', 'div', 'div_cast']}
MiniBatchKMeans                {'gemm': [True, False]}
MultiOutputClassifier          {'nocl': [False, True], 'output_class_labels': [False, True], 'zipmap': [False, True]}
MultinomialNB                  {'zipmap': [True, False, 'columns'], 'output_class_labels': [False, True], 'nocl': [True, False]}
NearestNeighbors               {'optim': [None, 'cdist']}
OneVsOneClassifier             {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True]}
OneVsRestClassifier            {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True], 'raw_scores': [True, False]}
Pipeline                       {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True], 'raw_scores': [True, False]}
QuadraticDiscriminantAnalysis  {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True]}
RadiusNeighborsClassifier      {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'raw_scores': [True, False], 'output_class_labels': [False, True], 'optim': [None, 'cdist']}
RadiusNeighborsRegressor       {'optim': [None, 'cdist']}
RandomForestClassifier         {'zipmap': [True, False, 'columns'], 'raw_scores': [True, False], 'nocl': [True, False], 'output_class_labels': [False, True], 'decision_path': [True, False], 'decision_leaf': [True, False]}
RandomForestRegressor          {'decision_path': [True, False], 'decision_leaf': [True, False]}
RobustScaler                   {'div': ['std', 'div', 'div_cast']}
SGDClassifier                  {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True], 'raw_scores': [True, False]}
SVC                            {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True], 'raw_scores': [True, False]}
Scaler                         {'div': ['std', 'div', 'div_cast']}
StackingClassifier             {'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True], 'raw_scores': [True, False]}
TfidfTransformer               {'nan': [True, False]}
TfidfVectorizer                {'tokenexp': None, 'separators': None, 'nan': [True, False], 'keep_empty_string': [True, False], 'locale': None}
TunedThresholdClassifierCV     {'zipmap': [True, False, 'columns'], 'output_class_labels': [False, True], 'nocl': [True, False]}
VotingClassifier               {'zipmap': [True, False, 'columns'], 'output_class_labels': [False, True], 'nocl': [True, False]}
_ConstantPredictor             {'zipmap': [True, False, 'columns'], 'nocl': [True, False]}
all options: ['decision_leaf',
 'decision_path',
 'div',
 'gemm',
 'keep_empty_string',
 'locale',
 'nan',
 'nocl',
 'optim',
 'output_class_labels',
 'raw_scores',
 'return_cov',
 'return_std',
 'score_samples',
 'separator',
 'separators',
 'tokenexp',
 'zipmap']

脚本总运行时间: (0 分 0.109 秒)

由 Sphinx-Gallery 生成的示例集