元数据

ONNX 格式包含与模型如何生成相关的元数据。这在模型部署到生产环境时非常有用,可以跟踪特定时间使用了哪个实例。让我们看看如何使用一个用 scikit-learn 训练的简单逻辑回归模型来做到这一点。

import skl2onnx
import onnxruntime
import sklearn
import numpy
from onnxruntime import InferenceSession
import onnx
from onnxruntime.datasets import get_example

example = get_example("logreg_iris.onnx")

model = onnx.load(example)

print("doc_string={}".format(model.doc_string))
print("domain={}".format(model.domain))
print("ir_version={}".format(model.ir_version))
print("metadata_props={}".format(model.metadata_props))
print("model_version={}".format(model.model_version))
print("producer_name={}".format(model.producer_name))
print("producer_version={}".format(model.producer_version))
doc_string=
domain=onnxml
ir_version=3
metadata_props=[]
model_version=0
producer_name=OnnxMLTools
producer_version=1.2.0.0116

使用 ONNX Runtime

sess = InferenceSession(example, providers=["CPUExecutionProvider"])
meta = sess.get_modelmeta()

print("custom_metadata_map={}".format(meta.custom_metadata_map))
print("description={}".format(meta.description))
print("domain={}".format(meta.domain))
print("graph_name={}".format(meta.graph_name))
print("producer_name={}".format(meta.producer_name))
print("version={}".format(meta.version))
custom_metadata_map={}
description=
domain=onnxml
graph_name=3c59201b940f410fa29dc71ea9d5767d
producer_name=OnnxMLTools
version=0

本例使用的版本

print("numpy:", numpy.__version__)
print("scikit-learn:", sklearn.__version__)
print("onnx: ", onnx.__version__)
print("onnxruntime: ", onnxruntime.__version__)
print("skl2onnx: ", skl2onnx.__version__)
numpy: 2.2.0
scikit-learn: 1.6.0
onnx:  1.18.0
onnxruntime:  1.21.0+cu126
skl2onnx:  1.18.0

脚本总运行时间: (0 分钟 0.102 秒)

由 Sphinx-Gallery 生成的图库