ONNX 转换基准测试

示例 训练并部署 scikit-learn 流水线 转换了一个简单的模型。本示例使用了类似的示例,但使用随机数据,并比较了每种选项计算预测所需的处理时间。

训练流水线

import numpy
from pandas import DataFrame
from tqdm import tqdm
from onnx.reference import ReferenceEvaluator
from sklearn import config_context
from sklearn.datasets import make_regression
from sklearn.ensemble import (
    GradientBoostingRegressor,
    RandomForestRegressor,
    VotingRegressor,
)
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from onnxruntime import InferenceSession
from skl2onnx import to_onnx
from skl2onnx.tutorial import measure_time


N = 11000
X, y = make_regression(N, n_features=10)
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.01)
print("Train shape", X_train.shape)
print("Test shape", X_test.shape)

reg1 = GradientBoostingRegressor(random_state=1)
reg2 = RandomForestRegressor(random_state=1)
reg3 = LinearRegression()
ereg = VotingRegressor([("gb", reg1), ("rf", reg2), ("lr", reg3)])
ereg.fit(X_train, y_train)
Train shape (110, 10)
Test shape (10890, 10)
VotingRegressor(estimators=[('gb', GradientBoostingRegressor(random_state=1)),
                            ('rf', RandomForestRegressor(random_state=1)),
                            ('lr', LinearRegression())])
在 Jupyter 环境中,请重新运行此单元格以显示 HTML 表示或信任该 notebook。
在 GitHub 上,无法渲染 HTML 表示,请尝试使用 nbviewer.org 加载此页面。


测量处理时间

我们使用函数 skl2onnx.tutorial.measure_time()。关于 assume_finite 的页面可能有助于您优化预测。我们测量每个观测值的处理时间,无论该观测值是否属于批次或单个观测值。

sizes = [(1, 50), (10, 50), (100, 10)]

with config_context(assume_finite=True):
    obs = []
    for batch_size, repeat in tqdm(sizes):
        context = {"ereg": ereg, "X": X_test[:batch_size]}
        mt = measure_time(
            "ereg.predict(X)", context, div_by_number=True, number=10, repeat=repeat
        )
        mt["size"] = context["X"].shape[0]
        mt["mean_obs"] = mt["average"] / mt["size"]
        obs.append(mt)

df_skl = DataFrame(obs)
df_skl
  0%|          | 0/3 [00:00<?, ?it/s]
 33%|███▎      | 1/3 [00:02<00:04,  2.47s/it]
 67%|██████▋   | 2/3 [00:05<00:02,  2.53s/it]
100%|██████████| 3/3 [00:05<00:00,  1.65s/it]
100%|██████████| 3/3 [00:05<00:00,  1.88s/it]
average deviation min_exec max_exec repeat number size mean_obs
0 0.004927 0.000599 0.004307 0.006856 50 10 1 0.004927
1 0.005127 0.000824 0.004372 0.008680 50 10 10 0.000513
2 0.006102 0.000432 0.005597 0.006985 10 10 100 0.000061


图表。

df_skl.set_index("size")[["mean_obs"]].plot(title="scikit-learn", logx=True, logy=True)
scikit-learn

ONNX runtime

对两种可用的 ONNX runtime 执行相同的操作。

onx = to_onnx(ereg, X_train[:1].astype(numpy.float32), target_opset=14)
sess = InferenceSession(onx.SerializeToString(), providers=["CPUExecutionProvider"])
oinf = ReferenceEvaluator(onx)

obs = []
for batch_size, repeat in tqdm(sizes):
    # scikit-learn
    context = {"ereg": ereg, "X": X_test[:batch_size].astype(numpy.float32)}
    mt = measure_time(
        "ereg.predict(X)", context, div_by_number=True, number=10, repeat=repeat
    )
    mt["size"] = context["X"].shape[0]
    mt["skl"] = mt["average"] / mt["size"]

    # onnxruntime
    context = {"sess": sess, "X": X_test[:batch_size].astype(numpy.float32)}
    mt2 = measure_time(
        "sess.run(None, {'X': X})[0]",
        context,
        div_by_number=True,
        number=10,
        repeat=repeat,
    )
    mt["ort"] = mt2["average"] / mt["size"]

    # ReferenceEvaluator
    context = {"oinf": oinf, "X": X_test[:batch_size].astype(numpy.float32)}
    mt2 = measure_time(
        "oinf.run(None, {'X': X})[0]",
        context,
        div_by_number=True,
        number=10,
        repeat=repeat,
    )
    mt["pyrt"] = mt2["average"] / mt["size"]

    # end
    obs.append(mt)


df = DataFrame(obs)
df
  0%|          | 0/3 [00:00<?, ?it/s]
 33%|███▎      | 1/3 [00:06<00:12,  6.37s/it]
 67%|██████▋   | 2/3 [00:18<00:09,  9.56s/it]
100%|██████████| 3/3 [00:29<00:00, 10.46s/it]
100%|██████████| 3/3 [00:29<00:00,  9.90s/it]
average deviation min_exec max_exec repeat number size skl ort pyrt
0 0.005081 0.000962 0.004419 0.010415 50 10 1 0.005081 0.000036 0.007617
1 0.004960 0.000507 0.004386 0.007150 50 10 10 0.000496 0.000008 0.001852
2 0.006076 0.000710 0.005279 0.007308 10 10 100 0.000061 0.000004 0.001088


图表。

df.set_index("size")[["skl", "ort", "pyrt"]].plot(
    title="Average prediction time per runtime", logx=True, logy=True
)
Average prediction time per runtime

ONNX runtime 在预测单个观测值时比 scikit-learn 快得多。scikit-learn 针对训练和批次预测进行了优化。这解释了为什么对于大批量数据,scikit-learn 和 ONNX runtime 的性能似乎趋于一致。它们使用相似的实现、并行化和语言(C++, openmp)。

脚本总运行时间: (0 分 36.073 秒)

由 Sphinx-Gallery 生成的图集